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Abstract. In respiratory motion modeling for the liver, the breathing pattern is 
usually obtained by using special tracking devices from skin or diaphragm, and 
subsequently applied as input to a 4D motion model for motion estimation. 
However, due to the intrinsic limits and economical costs of these tracking  
devices, the identification of the breathing pattern directly from intra-operative 
ultrasound images is a more attractive option. In this paper, a new method is 
proposed to automatically track the breathing pattern from 2D ultrasound image 
sequences of the liver. The proposed method firstly utilizes a Hessian matrix-
based 2D line filter to identify the liver boundary, then uses an adaptive search 
strategy to in real-time match a template block centered inside the identified 
boundary, and consequently extract the translational motion of the boundary as 
the respiratory pattern. The experiments on four volunteers demonstrate that the 
respiratory pattern extracted by our method is highly consistent to those  
acquired by an EM tracking system with the correlation coefficient of at  
least 0.91.  

Keywords: ultrasound images, breathing pattern tracking, Hessian matrix-based 
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1 Introduction 

Image-guided robot-assisted surgery and intervention are now used in more and 
more hospitals to overcome limitations of traditional open and minimally invasive 
procedures. The most successful and established surgical robot system is the Da 
Vinci® operating system by Intuitive Surgical Inc. The issues with the Da Vinci 
system, however, are high cost of system and consumables, long set-up time for use 
and the absence of built-in intelligence. Despite these issues, it plays an established 
role in complex surgeries because of the value-added benefits but its use in simple 
procedures is conversely limited. To address the use of robots for simple procedures, 
a new trend in the medical devices is to develop simple image-guided, dedicated, 
low cost and easy-to-use robotic systems for specific surgical and/or interventional 
procedures.  
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Enlightened by the success of the prostate robot [1], we are developing an  
ultrasound (US) guided robot to achieve quantitatively targeted liver tumor biopsy 
and ablation, which requires accurate registration of pre-operative 3D computational 
tomography (CT) or magnetic resonance (MR) liver models to 2D intra-operative 
ultrasound images. However, the registration is challenging due to the movement and 
deformation of the liver soft tissue mainly caused by the respiration. 

In order to compensate the respiration-induced motion, a possible solution is to 
track the targets using a 3D US probe [2], but the 3D US has limited scanning range, 
and produces large image data which causes the problems of processing, storing and 
transferring. Another potential scheme is to utilize a 2D US probe to track the target’s 
in-plane motion, and move the probe swiftly to derive the out-of-plane motion [3]. 
The limitation of this method is that only a very thin slice near the plane is scanned, 
and the vibration of the probe can also reduce the imaging quality. 

Therefore, at present, more attention is focused on model-based approach for  
the motion compensation [4]. With this approach, a pre-operative 4D whole liver 
motion model [5-7] or target-specific motion model [8, 9] is first created. During  
the intra-operative stage, a set of external or internal landmarks are tracked as the 
surrogate of respiratory pattern to drive the models to predict the liver motion. The 
external landmarks, applied on the abdomen or chest, are usually tracked using  
special optical or electromagnetic (EM) devices [8, 9]. These devices, however, create 
certain restrictions for the surgical robots. For example, there should be no optical or 
magnetic obstructs along the path of optical or electromagnetic tracker. On the other 
hand, as internal landmarks, the implanted fiducials [6] has the issue of invasiveness, 
and the diaphragm [7] requires an extra imaging device to track it. To overcome these 
problems, and particularly, to further reduce the cost of our surgical robot, and make 
it simple and portable, we wish to automatically identify the respiratory pattern from 
intra-operative US liver images.  

Since the liver motion is strongly related to the respiration [10] and the liver boun-
dary has relatively high contrast in 2D US images. Visually, the translational motion 
of the liver boundary in a fixed US imaging plane is quite related to the respiration 
pattern. In previous work [12], we discussed a manual way to select the liver boun-
dary and extract the respiration pattern from the boundary. In this paper, we mainly 
present an automatic method to identify the liver boundary and extract its translational 
motion as respiratory pattern. 

2 Materials and Methods 

2.1 Overview 

The main framework of our method is shown in Fig. 1, which is roughly divided into 
three main stages: 1) acquisition of US image sequences; 2) automatic identification 
of the liver boundary; 3) fast extraction of the breathing pattern. The experiment  
settings for acquiring the US images are elaborated in subsection 2.2.  

After acquired, the first image of the image sequence is selected as the reference 
image for the following identification. The liver boundary will be recognized by a 
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serial of consecutive processes (Fig. 1), namely filtering (enhancing the liver boun-
dary and removing other parts in the reference image), masking (eliminating the peri-
phery of the filtered image), thresholding (removing the weak non-boundary part), 
and finding the largest connected part (i.e. the liver boundary). Subsection 2.3 will 
describe the Hessian-based 2D line filter, which plays a key role in recognizing the 
liver boundary. 

After the liver boundary is recognized, a template block (65×65 pixels by experi-
ments), whose center is located inside the liver boundary, is automatically selected 
from the reference image of the image sequence. Using this template block, a frame-
by-frame matching process, based on the normalized correlation (NC) similarity me-
tric and adaptive search range, is executed to extract the breathing pattern. The search 
range on the current frame is adaptive because its center is updated as the optimally 
matched position of the former frame. Subsection 2.4 gives a detailed explanation on 
this search strategy, which makes use of the inter-frame dependency. 

 

Fig. 1. The processing flow of our method for identifying and extracting the breathing pattern. 
It consists of three basic consecutive stages: 1) acquisition of image sequences; 2) identification 
of the liver boundary; 3) extraction of the breathing pattern. 

2.2 Data Acquisition 

The US image sequences (image resolution of 640 × 480 pixels, pixel size of about 
0.37 × 0.37 mm and temporal resolution of 10 FPS) for analysis are acquired from 
four healthy volunteers (male, average age 36, ranged 25-46), and each sequence 
consists of 256 frames. The used US imaging system is the Terason t3000 with a 5C2 
transducer. In order to validate the breath pattern identified by our method, a NDI 
Aurora electromagnetic (EM) tracking system is used to track an EM sensor on the 
umbilicus of the volunteers while acquiring the US images. The motion of umbilicus 
is selected as the reference breathing pattern for evaluation because the umbilicus on 
the abdominal surface is usually a good position to monitor the abdominal respiration 
[4]. By using the dynamic libraries from NDI and Terason, we implemented a module 
in our software platform to synchronously record the US images and EM signals,  
each US frame corresponding to an EM position. Actually, each EM position has 3 
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components (x, y, z), but we only need to choose one of them, which changes highly 
correspond to the movement of the skin marker. In order to avoid the tremor of  
the US probe by hands, a robotic arm is designed to fix the probe, which can stably 
acquire the images.  

2.3 Hessian-Based 2D Line Filter 

We introduce a 2D line filter to selectively enhance the line-like structures (mainly 
the liver boundary) in US liver images and filter out other non-line structures. This 
filter is inspired by Frangi's multi-scale line filter [11], which was designed to  
enhance the vessels of different sizes in 2D digital subtraction angiography (DSA) 
and 3D magnetic resonance angiography (MRA) images. In this paper, the liver 
boundary, which we are interested in, may be regarded as a vessel-like structure of 
strong contrast, which is observed in the US images of Fig. 1. However, compared  
to the multi-scale nature of Frangi's filter simultaneously considering the vessels of 
various sizes in images, our filter is of single scale only dependent on the width of the 
liver boundary. 

Our line filter is on the basis of the eigenvalues of the Hessian matrix, which 
represents the second-order local structures of an image. The filtering process can be 
roughly divided into three basic consecutive steps:  

1) Gaussian-based smoothing. A Gaussian filter ( )σ;xG  with standard deviation 

σ  is employed to smooth the each pixel ( )xI  of the 2D image I , where ( )yx ,=x  

denotes a pixel location in the image;  
2) Calculation of Hessian matrix and its eigenvalues. The Hessian matrix 

( )σ;xH  of each pixel ( )xI  of the filtered image ( )σ;xI  is calculated by 
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where ( ) ( ) ( )σλσλσ ;;; 21 xxx =R  measures the blobness of each pixel in the image, 

( ) ( ) ( )σλσλσ ;;; 2
2

2
1 xxx +=S  defines the local second-order structureness of each 
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pixel, and β and c decide the sensitivity of the line filter to both measures ( )σ;xR  

and ( )σ;xS .  

The blobness measure will gain small values in the blob-like structures or back-
ground, but large values in the line-like structures, for instance the liver boundary. On 
the other hand, the structureness measure will be fairly low in the background where 
no outstanding objects are present, but in regions with high contrast, the measure will 
be comparatively high. Therefore, both measures are glued together to achieve the 
selective response of this filter on the line structures, and ignore the blob structures or 
background. In all the experiments of this paper, β  is fixed to 0.5. The value of  

cdepends on the grey-scale range of the image and half the value of the maximum 
Hessian norm has proven to work in most cases [11].  

2.4 Adaptive Search Strategy 

Due to the quasi-periodicity of the normal respiration, the liver tissue also moves in 
an approximately periodical way. Therefore, the liver tissue repeatedly appears in a 
relatively fixed extent (the maximal motion appears in the superior-inferior direction 
with the range of 5-25 mm [10]) in a normal or even deep breathing cycle, and  
the search range can be restricted as a medium extent. Our experiment shows that a 
region of 129×129 pixels is required to find the optimal match. During the frame-by-
frame matching process, the traditional search strategy is to fix the center of the 
search range according to the position of the template region on the reference image, 
which is called as center-fixed search strategy, which is time-consuming and cannot 
satisfy the real-time requirement for the motion tracking.  

Motivated by this problem, we present a new adaptive search strategy [12],  
which defines a serial of small center-variant search ranges along the frame-by-frame 
matching process. Our search strategy makes full use of the inter-frame dependency 
of the US image sequence, which assumes that the motion extent of the liver tissue is 
small for two successive frames. Therefore, any specified image block on the former 
frame should appear inside the small neighbor region of the same position on current 
frame. The optimal matching position of the former frame can be used as the center of 
the search range of the current frame. Based on this principle, a serial of relatively 
small search ranges (17×17 pixels), whose centers are automatically updated accord-
ing to the former matched result, are formed along the image sequence. Here, we  
call center-variant search range as adaptive search range. Using the adaptive search 
strategy, we may quickly extract the respiratory pattern from the liver boundary. 

3 Results 

Fig. 2 shows the gradually varying filtering responses by tuning the smooth scale 
parameter in Eq. (2). The results show that this filter gains strongest response near the 
scale 11=σ  where the filtered boundary is maximally close to that in the original 
image. The experiments on various US images from four volunteers also support this 
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conclusion. Therefore, in all the following experiments of this paper, the smooth scale 
is fixed to 11. These experiments also prove the scale parameter is roughly propor-
tional to the width of the liver boundary. 

Fig. 3 shows the selectivity characteristic of the Hessian matrix-based line filter, 
where four sample images scanned from four corresponding volunteers are filtered.  
It is observed that the response has high value at the liver boundary and other line 
structures of high contrast. Since the smooth scale is set to fit the liver boundary and 
the boundary has higher contrast than other line-like structures, the response is 
strongest near the boundary. Therefore, as expected, the liver boundary can always be 
selectively preserved by the subsequent thresholding and largest-region-selection. 

 

 

Fig. 2. Responses of our line filter under different smoothing scales. The strongest response on 
the liver boundary is gained at the scale 11=σ , which simultaneously most approximates the 
boundary in the original image. 

 

Fig. 3. The sample images (left one of each image pair) from four volunteers are processed by 
the line filter, and the response is strongest near the liver boundary 

In order to validate our method, we chose the movement of the umbilicus on the  
abdominal skin as the reference breathing pattern. Four image sequences from three 
corresponding volunteers were used for processing, and, for each image sequence, 
two exemplary image blocks centered inside the recognized liver boundary were se-
lected as matching templates. The extracted breathing patterns (Fig. 4, plotted in red) 
were visually compared to the reference breathing patterns of the umbilicus (Fig. 4, in 
green). A visual inspection on both patterns shows that the extracted breathing pat-
terns are highly consistent with the reference ones. For convenience of visual inspec-
tion, all motion curves, including the reference ones, were normalized to the interval 
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of 0 to 1. Using the correlation coefficient (CC) metric, the extracted breathing  
patterns by our method were quantitatively compared to the reference ones. The  
results from Table 1 show high relevance between both kinds of breathing patterns, 
which can be explained by that the motions of the liver and the abdominal skin are all 
induced by the respiration. 

In addition, we also performed a quantitative analysis on the computation efficien-
cy of our method, which is listed in Table 2. It is noticed that our adaptive search 
method can extract the breathing patterns in about 5 seconds for an image sequence  
of 256 frames, whereas the traditional search method takes nearly 6 minutes. These 
experiments were executed on a Dell workstation with Intel Xeon CPU E5620 2.4 
GHz and 12G RAM, and the single-thread programming mode was used.  

 

Fig. 4. Consistency is visually compared between the breathing patterns (in red), identified by 
our method, and the EM-tracked reference patterns of the umbilicus (in green). 8 template 
blocks from 4 volunteers' image sequences of 256 frames are used. 

Table 1. The consistency between the extracted breathing patterns and the reference breathing 
patterns is analyzed using the correlation coefficient (CC). The image sequences are the same 
as Fig. 4. 

 Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 

Blocks A B C D E F G H 
Relevance 0.9559 0.9541 0.9511 0.9379 0.9844 0.9784 0.9172 0.9206 

Table 2. The computation time between the traditional search strategy and our adaptive 
strategy is compared. The image sequences are the same as Fig. 4, and the time unit is second. 

 Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 

Blocks A B C D E F G H 

Time (s) 
Traditional 301.4 299.6 260.0 278.0 299.4 299.7 290.8 291.7 
Adaptive 5.19 5.22 5.17 5.19 5.22 5.14 5.07 5.05 

4 Conclusion 

We have introduced an efficient Hessian matrix-based 2D line filter to automatically 
identify the liver boundary from the ultrasound image sequences, and then proposed 
an adaptive block matching method to extract the translation motion of the liver 
boundary as the respiratory pattern. The experiments have also demonstrated that our 
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method can automatically and precisely recognize the liver boundary, and in several 
seconds extract the breathing pattern, which is in phase comparable to that of the EM 
tracking system. This will be of great help for US-guided surgical robots to have a 
build-in respiratory signal tracking system, resulting in a more compact and flexible 
design at low cost. 
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