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Abstract
Purpose In model-based respiratory motion estimation for
the liver or other abdominal organs, the surrogate respiratory
signal is usually obtained by using special tracking devices
from skin or diaphragm, and subsequently applied to para-
meterize a 4D motion model for prediction or compensation.
However, due to the intrinsic limits and economical costs of
these tracking devices, the identification of the respiratory
signal directly from intra-operative ultrasound images is a
more attractive alternative.
Methods We propose a fast and robust method to extract
the respiratory motion of the liver from an intra-operative
2D ultrasound image sequence. Our method employs a pre-
process to remove speckle-like noises in the ultrasound
images and utilizes the normalized cross-correlation to mea-
sure the image similarity fast. More importantly, we present
a novel adaptive search strategy, which makes full use of the
inter-frame dependency of the image sequence. This search
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strategy narrows the search range of the optimal matching,
thus greatly reduces the search time, and makes the matching
process more robust and accurate.
Results The experimental results on four volunteers demon-
strate that our method is able to extract the respiratory sig-
nal from an image sequence of 256 image frames in 5 s.
The quantitative evaluation using the correlation coefficient
reveals that the respiratory motion, extracted near the liver
boundaries and vessels, is highly consistent with the refer-
ence motion tracked by an EM device.
Conclusions Our method can use 2D ultrasound to track
natural landmarks from the liver as surrogate respiratory sig-
nal and hence provide a feasible solution to replace special
tracking devices.

Keywords Respiratory motion · Ultrasound liver images ·
Similarity metric · Adaptive searching

Introduction

Image-guided robot-assisted surgery and intervention are
now used in more and more hospitals to overcome limita-
tions of traditional open and minimally invasive procedures.
The most successful and established surgical robot system
is the Da Vinci� operating system by Intuitive Surgical Inc.
The issues with the Da Vinci system, however, are high cost
of system and consumables, long setup time for use, and the
absence of built-in intelligence. Despite these issues, it plays
an established role in complex surgeries because of the value-
added benefits, but its use in simple procedures is conversely
limited. To address the use of robots for simple procedures,
a new trend [1] in the medical devices is to develop sim-
ple image-guided, dedicated, and low-cost robotic systems
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for specific surgical and/or interventional procedures. Com-
putational tomography (CT) or magnetic resonance (MR)
imaging is able to show higher-resolution details of anatomy
structures, but CT imaging has the disadvantage of radiation
exposure and potential damage, while MR imaging is expen-
sive and also requires relatively expensive MR-compatible
devices; therefore, CT/MR images are usually used in pre-
operative planning. On the other hand, ultrasound (US) imag-
ing can provide real-time intra-operative visualization of
anatomy structures, but, due to its low contrast, usually costs
a lot of time for physicians in target localization and also
needs CT or MR imaging for intra- or post-procedure verifi-
cations of targeting and ablation.

Enlightened by the success of the prostate robot [2], we
are developing an US-guided robot to achieve quantitatively
targeted liver tumor biopsy and ablation, which requires
accurate registration of pre-operative 3D CT or MR liver
models to 2D intra-operative US images. However, the reg-
istration is challenging due to the movement and deforma-
tion of the liver soft tissue mainly caused by the respiration
[3]. At present, there are two classes of motion compensation
approaches: real-time motion tracking for specific targets and
model-based motion prediction.

For target-specific motion tracking, 3D US is a possible
solution [4], but its small field of view limits its capacity
to capture the whole organs, or track great motions possi-
bly beyond the view, and its low voxel resolution may cause
missing of small targets. Another potential scheme is to uti-
lize a 2D US probe to track the target’s in-plane motion, and
move the probe swiftly to acquire additional images to derive
the out-of-plane motion [5]. The limitation of this method is
that only a very thin slice near the plane is scanned, and the
vibration of the probe can also reduce the imaging quality
and lead to inaccurate out-of-plane motion estimation.

Therefore, at present, more attention is focused on the
model-based approach for motion correction [6]. With this
approach, a 4D whole-liver motion model [7–12] or target-
specific motion model [13–15] is first created from a
sequence of MR/CT scans covering one or multiple breathing
cycles at the pre-operative stage, and then applied to predict
the future motion during the intra-operative stage. However,
for both stages, a set of external or internal landmarks are
always tracked as the surrogate respiratory signal to either
form the correlation with the true motion we want to estimate,
or be used as input to drive the motion model for motion
compensation. On the one hand, the external landmarks,
applied on the abdomen or chest, are usually tracked using
special optical or electromagnetic (EM) devices [13,14].
These devices, however, create certain restrictions for sur-
gical robots. For example, there should be no optical or mag-
netic obstructs along the optical or electromagnetic line of
sight of these trackers. On the other hand, as internal land-
marks, implanted fiducials [12] have the issue of invasive-

ness, leading to some infections or other complications. The
inferior–superior (IS) motion of the diaphragm is also a good
indicator of the breathing signal [8,9,11], but the diaphragm,
as the interface between the upper abdomen and the lower
lung, does not always appear in the intra-operative US liver
images. Therefore, besides a real-time US imaging device to
provide the view of the liver to physicians, an extra MR/US
imaging device/process is required to stare at the diaphragm
to provide the respiratory signal to the motion model. To
overcome these problems, and particularly, to further reduce
the cost of our surgical robot, and make it noninvasive, sim-
ple, and portable, we wish to identify the respiratory signals
directly from intra-operative US liver images.

Since the liver motion is mainly caused by the respiration
[3], the translational motion of the liver regions near the liver
boundaries or vessels can well represent the respirator sig-
nal, comparable to the respiratory signal from other internal
or external landmarks. In this paper, we first present an effi-
cient and robust method for extracting the respiratory motion
from intra-operative US liver images and then evaluate the
consistency between the identified respiratory motion and
the motion of the skin landmark recorded by an EM tracker.

Methods

The main framework of our method is shown in Fig. 1, which
consists of six consecutive steps: image acquisition, video

Fig. 1 The main flowchart of our method for extracting the respiratory
motion signals. It can be divided into six successive stages: acquiring
image sequences, loading an image sequence into MIUE, preprocess-
ing the image sequence, selecting a specific region as the matching
template, searching the optimal match frame by frame, and extracting
the breathing signal
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loading, pre-filtering, template region selection, frame-by-
frame optimal matching, and final breathing signal extrac-
tion. After acquired using a 2D US probe to scan volunteers,
the US image video is loaded into our interactive model-
based image understanding environment (MIUE) platform1

for further processing. Before extracting the breathing sig-
nal, the image sequence is preprocessed by a median filter
to smooth the speckles present in the images. A template
image region is then manually selected from the reference
image of the dynamic image sequence. Using this template
region, a frame-by-frame matching process, based on nor-
malized cross-correlation, is executed, and the search space
of each frame is determined by the matched results of the
former frame. Finally, the respiratory signal of the specified
region can be extracted.

Noise removal

For US images, speckle-like noises often disturb the frame-
by-frame matching process and lead to unstable matching
results. Therefore, a median filter is firstly employed to pre-
process the image sequence before extracting the breathing
pattern. This preprocess is able to remove the prominent
speckle-like noises and improve the robustness and accuracy
of the following matching process, which will be demon-
strated in the experiments in the next section.

Template region

The selection criterion of the template image region is that
this region should contain salient intensity characteristic for
robust matching, such as liver boundaries or vessels, because
their translational motion is highly relevant to the respiration.
In addition, the size of the template image region will be care-
fully chosen and tuned to achieve the trade-off between the
computation cost and stability of the similarity measurement.
If its size is too small, it will make the matching process unsta-
ble. On the other hand, if too large, it will lose the locality of
the motion, and greatly increase the time cost of the matching
calculation. The experiments will show that a medium region
of 65×65 pixels is appropriate for robust and fast matching.

Similarity metric

A good image similarity widely investigated and applied in
image registration is mutual information (MI) [16]. How-
ever, this metric involves costly computations due to the
calculation of the entropies and is more suitable for the
multi-modality image registration. On the other hand, the
dynamic liver US images can be respected as single-modality

1 http://www.liversuite.com/.

because the intensity may not change greatly for the suc-
cessive images even though there is the respiratory motion.
Hence, for this case, the normalized cross-correlation method
[17] is a better choice as the image similarity metric of the reg-
istration. This metric calculates pixelwise cross-correlation
and divides it by the square root of the autocorrelation of the
images:
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where A and B are the measured image or image region pair,
and N is the number of pixels of an image or its sub-region.

Adaptive search

In image registration, the search space, including its center
and size, defines the matching range of the template image on
the targeted image. To achieve efficient and robust match, a
basic search strategy is to determine the search space as small
as possible on the targeted image. The allowable maximal
search space can be the same as the searched image (640 ×
480 pixels for the US images in this paper), but the match
process is very time-consuming. For most cases, the search
space can be restricted as a smaller region than the entire
searched image.

Due to the quasi-periodicity of the normal respiration, the
liver tissue also moves in an approximately periodical way.
Therefore, the liver tissue repeatedly appears in a relatively
fixed extent (1–12 mm [7]) in a normal or even deep breathing
cycle, and the search space can be restricted as a neighbor-
hood range of the template region. For instance, the experi-
ments show that a region of 129 × 129 pixels is enough to
find the optimal match. During the frame-by-frame match-
ing process, the traditional search strategy is to fix the search
center as the center of the template region and find the opti-
mum near the search center, which is called as center-fixed
search strategy. However, the experiments show that this
search strategy is still very time-consuming; nearly 6 min
is required for an image sequence consisting of 256 frames.

Motivated by this problem, we present a new adaptive
search strategy, which defines a serial of small center-variant
search spaces along the frame-by-frame matching process.
Our search strategy makes full use of the inter-frame depen-
dency of the US image sequence, which assumes that the
motion extent of the liver tissue is small for two successive
frames. Therefore, any specified image region on the former
frame should appear in the small neighbor region of the same
position on current frame. The optimal matching position of
the former frame can be used as the center of the search
space of the current frame. Based on this principle, a serial
of relatively small search spaces, whose centers are automat-
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Fig. 2 The adaptive search strategy updates the search center on the current frame, according to the matched result of the previous frame. Due to
the slow variation in the liver tissue on two successive frames, the search space (dashed green square on the right subfigure) can be very small

ically determined according to the former matched result,
are formed along the image sequence. Here, we call center-
variant search space as adaptive search space, and the basic
matching process using adaptive search strategy is delineated
in Fig. 2. Using the adaptive search strategy, we may fast and
robustly extract the respiration pattern of the specified liver
region.

Respiratory signal

In respiratory motion modeling, the surrogate respiratory sig-
nal is applied to firstly establish the correspondence with true
motion of the liver, and then as input to the motion model
for prediction or compensation. In general, the respiratory
signal is certain physical measurement closely reflecting the
human respiration pattern and, more importantly, should be
highly relevant to the respiration-induced motion we want
to estimate. For previous work on the liver motion mod-
eling, researchers usually utilized special tracking devices
to extract the respiratory signals from skin markers [13,14],
implanted fiducials [12], or diaphragm [8,9,11]. In this paper,
the respiratory signal is defined as 1D quasi-periodical signal
extracted from the intra-operative liver US images by using
our approaches.

For signal extraction, the reference image and template
region are firstly specified in an interactive way; our extrac-
tion method is then applied to obtain the respiratory signal
from a sequence of frame images. In essence, our matching
process for each frame is a 2D rigid registration with only
considering translations, which is highly related to the breath-
ing pattern. This process searches the current frame for a cor-
responding region, which best matches the manually speci-
fied template region, and the 2D displacement between the
matched region and the template region is recorded. After the
adaptive search process is iteratively performed, a sequence
of 2D displacements will be obtained. The 2D displacements
reflect 2D in-plane respiratory motion of the selected liver
region. We will choose the 1D direction with larger average
amplitude as the surrogate respiratory signal.

The use of the surrogate respiratory signal depends on dif-
ferent considerations during establishing and applying these
motion models [6], and its different signal attributes can all
be utilized for motion model parameterization, such as the
periodicity, amplitude, phase, or combination of them.

Results

Experiment setup

Figure 3 shows the experiment setup used to obtain data
for the following analysis and validation. The US imaging
device used is a Terason t3000 US system with a 5C2 curve
linear transducer, where its US frequency is 3.5 MHz. The
2D B-mode US image sequences (with image resolution of
640 × 480 pixels, pixel size of about 0.37 × 0.37 mm and
temporal resolution of 10 FPS) were obtained from four
healthy volunteers with different breathing frequency, and
each sequence contains 256 frames. All the experiments on
extracting the respiratory motion in this paper were executed
on a Dell workstation with Intel Xeon CPU E5620 2.4 GHz
and 12 G RAM, and the single-thread programming mode
was used. For avoiding the tremor of the probe by hands, we
design a robotic arm to stably hold this US probe to acquire
US images only containing the internal liver motion.

In order to validate the respiratory signals identified by our
method, a NDI Aurora EM tracking system is used to track
an EM sensor placed on the umbilicus of the volunteers while
acquiring the US images. The anterior–posterior (AP) motion
of the abdominal umbilicus is selected as reference respira-
tory motion for verification because the abdominal surface is
usually a good position to place external marker to monitor
the respiration, which is often adopted in respiratory motion
modeling to obtain the surrogate breathing signals [6]. By
using dynamic libraries provided by NDI and Terason ven-
dors, we implemented a module in our software platform
to record the EM signals and US images for ensuring rela-
tively precise synchronization, each US frame correspond-
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Fig. 3 Setup for acquiring US images in synchronization with EM sig-
nals. In the left photograph, A on the right chest is the US transducer
for imaging the right liver lobe, B on the left of the volunteer is a NDI
Aurora EM tracking device, and C on the umbilicus is an EM sensor

tracked by this EM device. In the right photograph, the laptop belongs
to a part of the Terason US system, used for displaying the acquired
images, which are simultaneously loaded into our MIUE framework on
the bigger monitor

ing to an EM position. For each pair of EM–US data, we
firstly record the EM signal and then the US image. Since
the function to read the EM data executes extremely fast
(more than 1000 Hz), the latency between each EM signal
and US data is negligible. In addition, the US images are
transferred to the computer for data processing via a fiber-
optic cable, with the transmission latency of less than 3 ms
(640 × 480 × 8/109 = 2.3 ms).

Experimental results

In this section, multiple sets of experiments were performed
to analyze different aspects of our method, including effect
of the noise removal, trade-off of the template region size,
and efficiency and robustness of the adaptive search strategy.
Finally, a set of experiments for consistency validation were
executed to visually and quantitatively compare the extracted
respiratory motion to the reference motion of the abdominal
umbilicus tracked by the EM system.

Noise removal. In this experiment, four image sequences
from four different volunteers were used, the template region
was fixed to 65×65 pixels, the adaptive search space 17×17
pixels, and the filter size is gradually increased to analyze the
impact of the pre-filtering on the identified respiratory motion
curves. The first row in Fig. 4 displays four reference images,
corresponding to the first image of each image sequence,
respectively. For each reference image, an exemplary region
is selected as the matching template, labelled by a red box.
The second row in Fig. 4 shows four reference respiratory
signals of the umbilicus tracked by the EM system while
acquiring these image sequences. The last three rows list
the extracted respiratory motion curves from these image
sequences without filtering or with a median filter of 5 × 5

or 9 × 9 pixels. These experimental results show the median
filter can eliminate the speckle-like noises present in the US
images and make the frame-by-frame matching process more
robust and accurate. Consequently, noises are removed from
the respiratory motion curves, but the entire profile of the
motion curve is well preserved.

Template region. In order to demonstrate the effect of
the template region size on the resulting respiratory motion
curves, a series of experiments were performed by grad-
ually increasing the size of the template region, which is
displayed in Fig. 5. For separately investigating the tem-
plate region, the pre-filtering was not used and the size of
the adaptive search space was fixed as 17 × 17 pixels. Four
exemplary template regions (A, B, C, and D) from four vol-
unteers’ sequences, respectively, were selected for analysis
(the first row of Fig. 5), and their sizes vary from 33 × 33
pixels to 129 × 129 pixels. It is observed that, using a tem-
plate region of 33 × 33 pixels, the resulting motion curves
are extremely unstable with heavy noises and shape distor-
tion (the third row of Fig. 5), compared to the EM reference
motion curves (the second row of Fig. 5). When the template
regions grow to 65 × 65, 97 × 97, and 129 × 129 pixels,
these motion curves basically have relatively small noises
and similar shapes with the reference curves (the last three
rows of Fig. 5). The matching time for different template
region sizes is listed in Table 1 and linearly increases with
the pixel number of the template region (the region size).
For trade-off between the stableness and computation time,
a square template region of 65×65 pixels can basically meet
our need in spite of some noises, which can be improved
by pre-filtering. Therefore, in the other experiments of this
paper, the sizes of the template regions will be fixed to 65×65
pixels.
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Fig. 4 Pre-filtering can improve the matching results and make the
respiratory motion curves smoother. The first row corresponds to four
reference images from the first images of four image sequences, respec-

tively, the second row corresponds to the reference respiratory signals
on the umbilicus tracked by the EM system, and the last three rows cor-
respond to the extracted motion curves using different filtering settings

Fig. 5 Increasing the template region sizes can improve the accuracy
of the extracted respiratory motion curves. The first row displays four
reference images from four volunteers’ image sequences, respectively,
the second row lists the reference breathing patterns of the umbilicus

tracked by the EM system, and the last four rows correspond to the
extracted respiratory motion curves by increasing the template region
sizes

Table 1 The search time
linearly increases with the pixel
number of the template region
(region size)

The image sequences and
corresponding template regions
are the same as in Fig. 5

Template region Region size (search time, in seconds)

33 × 33 65 × 65 97 × 97 129 × 129

A 1.33 5.17 11.50 20.37

B 1.33 5.15 11.53 20.26

C 1.32 5.10 11.41 20.05

D 1.33 5.24 11.63 20.38
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Fig. 6 Using center-fixed searching strategy, a medium search range (129 × 129 pixels) can extract good motion curves. However, using adaptive
searching strategy, a relatively small search range (17 × 17 pixels) is enough

Table 2 Comparison of computation time for different search strategies

Template region Traditional (time, in seconds) Adaptive (time, in seconds)

33 × 33 65 × 65 129 × 129 9 × 9 17 × 17

A 19.31 75.10 293.34 1.43 5.08

B 19.85 76.90 304.27 1.49 5.27

C 19.46 75.26 296.17 1.44 5.13

D 19.40 75.13 295.66 1.42 5.16

The search time linearly increases with the size of the search space, and the adaptive search strategy (129 × 129 pixels) can gain a speedup of tens
of times over the traditional search strategy (17 × 17 pixels) when the similar respiratory motion curves are extracted (Fig. 6). The image sequences
and corresponding template regions are the same as in Fig. 6

Adaptive search. A series of experiments were performed
to demonstrate the efficiency and robustness of our adaptive
strategy in contrast to the traditional center-fixed search strat-
egy. In order to focus on the search strategy, the pre-filtering
was not used and the size of the template region was fixed as
65 × 65 pixels. Four typical template regions were manually
selected from four volunteers’ image sequences, respectively
(the first row of Fig. 6, marked in red boxes), and the refer-
ence respiratory signals of the umbilicus were recorded by
the EM device when acquiring each image sequence (the sec-
ond row of Fig. 6). Based on the center-fixed search strategy,
we cannot obtain correct respiratory motion curves using the
search range of 33×33 or 65×65 pixels (the third and fourth
rows of Fig. 6). Only when the search range is increased to
129 × 129 pixels (the fifth row of Fig. 6), correct respiratory
motion curves are available, but leads to large computation
cost. In contrast, using the adaptive search technique can

find optimal match in a relatively small search range, usu-
ally a region of 17 × 17 pixels (the seventh row of Fig. 6).
The computation time for the extracted respiratory motion
curves in Fig. 6 is listed in Table 2. In order to obtain satis-
factory respiratory curves, using adaptive searching strategy
(17 × 17 pixels) can extract the curves in about 5 s for an
image sequence of 256 frames in Fig. 6, while using center-
invariant search technique (129 × 129 pixels) needs about
300 s. Therefore, a great speedup of the order of tens can be
achieved using our proposed search technique. In addition,
adaptive search strategy leads to a relatively small search
range, makes the matching process more robust, and con-
sequently alleviates the noises present in the final motion
curves, which is observed by comparing the fifth and sev-
enth rows of Fig. 6.

Consistency validation. In order to evaluate the accuracy
of our method, three exemplary regions on each reference
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Fig. 7 Consistency is visually compared between the identified motion curves (in red) and the EM-tracked reference motion of the umbilicus (in
green). The motion curves extracted near the liver boundaries and vessels highly approximate to the reference respiratory curves

Table 3 Consistency is quantitatively analyzed using the correlation coefficient (CC) metric

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4

Region A B C D E F G H I J K L

Consistency 0.9591 0.9415 0.1187 0.9701 0.0627 0.9379 0.1824 0.9714 0.9798 0.1715 0.9389 0.9107

The image sequences and selected template regions are the same as Fig. 7

image of each volunteer’s image sequence (the first row of
Fig. 7) are selected as matching templates, and the identified
motion curves (the second to fourth rows of Fig. 7, in red)
are visually compared to the reference motion on the umbili-
cus (in green). For better visual inspection, the identified
curves have been linearly scaled to have the same minimum
and maximum as the EM reference curves. In addition, the
indentified motion curves are also quantitatively compared
with the reference motion curve using correlation coefficient
(CC), which is listed in Table 3. Observed from Fig. 7 and
Table 3, the motion curves extracted from the liver bound-
aries and vessels have nearly consistent respiratory phases
with the reference curves, and the corresponding CC values
are all greater than 0.9. These results show that the transla-
tional motions of the liver boundaries and vessels are highly
relevant to the respiration, which reveals the potential to
extract the surrogate breathing signals from intra-operative
US images instead of tracking external landmarks. For other
regions without the liver boundaries or vessels, the intensity
values are approximately homogeneous and the contrast is
very low, and thus, the translational motion is small or dif-
ficult to detect. Therefore, the identified curves near these
regions are heavily inconsistent with the reference curves,
and the corresponding CC values are very small, less than
0.2. All the experiments above demonstrate that some areas
of the liver images carry more respiration-relevant informa-
tion, such as the liver boundary and vessels, than others, and
we can extract from intra-operative US liver images the sur-
rogate respiratory signals, which is comparable to that by
tracking the external landmarks. This observation supports

our assumption of removing extra tracking devices from our
ongoing surgical robots, which is expected to be simple,
portable, and low cost.

Conclusion

A fast and robust method has been proposed to identify
the respiratory motion of the liver based on its US image
sequence. Using the adaptive search strategy, the method is
able to achieve fast motion estimation within several sec-
onds. The experiments also demonstrate that our method
can produce accurate and robust results comparable to those
of the EM tracking system. This will be of great help for
the US-guided surgical robot to have a built-in respiratory
motion tracking system, resulting in more compact and flex-
ible design at relatively low cost. In future, we plan to perform
more detailed validation on more subjects of different nor-
mal or abnormal breathing patterns and further demonstrate
high relevance of special parts (such as the liver boundary
and vessels) with the respiration. We also attempt to pro-
pose a robust method to automatically identify these special
parts from intra-operative US images and finally extract their
respiratory signal as the surrogate.

Conflict of interest None.
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