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Abstract Multidimensional adaptive sampling technique is
crucial for generating high quality images with effects such
as motion blur, depth-of-field and soft shadows, but it costs
a lot of memory and computation time. We propose a novel
kd-tree based parallel adaptive rendering approach. First,
a two-level framework for adaptive sampling in parallel is
introduced to reduce the computation time and control the
memory cost: in the prepare stage, we coarsely sample the
entire multidimensional space and use kd-tree structure to
separate it into several multidimensional subspaces; in the
main stage, each subspace is refined by a sub kd-tree and
rendered in parallel. Second, novel kd-tree based strategies
are introduced to measure space’s error value and generate
anisotropic Poisson disk samples. The experimental results
show that our algorithm produces better quality images than
previous ones.
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1 Introduction

Sampling technique concerns how to transform a continu-
ous signal into a discrete representation with as much in-
formation as possible and reconstruction technique is its re-
verse process. Both of them are applied frequently in imag-
ing, rendering, geometry processing. In photorealistic ren-
dering, sampling and reconstruction techniques are used to
do anti-aliasing, remove noises and generate high quality
images with effects such as motion blur, depth-of-field and
soft shadows. This kind of images always has different fre-
quencies in different regions. Depending on the changing
frequencies, the sampling method decreases the samples in
the smooth regions and increases the samples in the rapid
changing regions, which is known as adaptive sampling.

The adaptive sampling methods give better quality results
than the images obtained by using stochastic sampling meth-
ods [1]. However, most of these methods only adaptively
sample the image plane dimensions, but randomly sample
the other dimensions. This kind of methods are hard to gen-
erate good images having effects of motion blur, depth-of-
field or soft shadows. Recent advanced approaches consider
non-image dimensions such as time [2] or area light’s sur-
face [3]. Hachisuka et al. propose a multidimensional adap-
tive sampling method [4], but it costs large computation time
and a lot of memory.

Motivated by this observation, a kd-tree based parallel
adaptive rendering algorithm is presented in this paper. Our
algorithm includes the following contributions.

Kd-tree based parallelization Our algorithm uses kd-tree
structure to separate the entire render space and considers
each node of the kd-tree as a subspace which will be ren-
dered in parallel. Owing to this novel parallelization strat-
egy, the computation time decreases and the memory cost is
under control.
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Feature-focus error measurement According to the draw-
backs of most local variance measurement methods, a new
method is presented to measure the space variance which
focuses on both local and global features. In addition, our
method can also consider the optional depth and velocity
features of the scene.

Anisotropic radius-varying Poisson disk sampling To ren-
der high quality image, a novel method is described to gener-
ate anisotropic radius-varying Poisson disk samples in mul-
tidimensional space. This variable Poisson disk radius de-
pends on the kd-tree node’s size and the anisotropic property
depends on the node splitting process.

Noise removal Based on our kd-tree structure, a noise re-
moval strategy is easily applied in our algorithm to remove
the outlier samples, whose values are much larger or smaller
than their neighbor samples.

2 Related work

Adaptive sampling  Since Whitted first proposed to use an
adaptive sampling method in Monte Carlo ray tracing [5],
there are two main categories of adaptive sampling methods.
Most researchers prefer to the first one which only adap-
tively samples the image plane. Early methods [1, 6, 7] gen-
erate adaptive samples relying on the measurement of local
variance or attempt to use an density map of the image [8].
Overbeck et al. [9] use wavelet to analyze the frequency of
the image and adaptively sample the area having high vari-
ance value in different scale resolutions. Greedy error mini-
mization method given by Rousselle et al. [10] shows good
results for adaptive sampling and reconstruction of the im-
age. However, these methods only adaptively sample the im-
age plane and ignore the non-image dimension information.
They are hard to use for generating efficient effects such as
motion blur, depth-of-field and soft shadows.

The second category methods are multidimensional
adaptive sampling. Egan et al. [2] use a Fourier transform
method to adaptively sample the multidimensional informa-
tion and provide an excellent motion blur effect. Another
method proposed by Soler et al. [11] uses Fourier transform
to analyze the lens dimensions and improves the depth-of-
field effect. Chen et al. [12] use depth map and variance
value to sample and reconstruct the image of depth-of-field
effect. Most of these methods are dimensional limited. They
consider only one or two non-image dimensions. The tem-
poral light field reconstruction [13] reconstructs multidi-
mensional samples into high quality results, but it must have
velocity and depth information. The multidimensional adap-
tive sampling method presented by Hachisuka et al. [4] uses
kd-tree to split the space and generate good results. How-
ever, it costs a lot of memory and it is hard to generate high
resolution images.
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Poisson disk sampling Poisson disk distributions were
used by early researchers [1, 14] to turn regular aliasing pat-
terns of the image into noises. Yellot found that the pho-
toreceptors in the retina of human eyes are distributed ac-
cording to a Poisson disk distribution, which implies that
Poisson disk distribution is effective for rendering [15]. To
generate the Poisson disk distribution better and faster, sev-
eral methods were proposed, such as dart throwing [14], tile
Poisson disk sampling [8], multidimensional Poisson disk
[16, 17], multi-class Poisson disk [18] and parallel Poisson
disk sampling [19]. However, there is no research on gener-
ating Poisson disk distribution which is suitable for adaptive
multidimensional sampling.

Anisotropic sampling In recent years the anisotropic prop-
erty has been used to assist sampling method. McCool [20]
gives an anisotropic diffusion algorithm to reduce the Monte
Carlo noises. Li et al. [21] provide a method to gener-
ate anisotropic blue noise samples on the plane surface
and the object surface. To judge anisotropic sample dis-
tribution, a differential domain analysis method [22] is
proposed. However, using anisotropic distribution tech-
niques to sample multidimensional space is still a chal-
lenge.

3 Overview

Adaptive sampling process needs the feedback of the current
sampled samples in global render space to calculate the next
optimal efficient sample in this space. Therefore, the adap-
tive sampling process is viewed as a serialized process and
difficult to execute in parallel.

This paper proposes a kd-tree based parallel adaptive ren-
der algorithm. A kd-tree (short for k-dimensional tree) is
a space-partitioning data structure for organizing samples
in a k-dimensional space. The kd-tree is used to split the
global space into subspaces in our algorithm. Each subspace
is assigned an appropriate sample budget and is adaptively
rendered in parallel. Our algorithm tends to use the optimal
samples in the local subspace to approach the optimal sam-
ples in the global space of the original adaptive sampling
process. Depending on this core idea, a two-level framework
is proposed: the multidimensional space initialization stage
and the parallel adaptive rendering stage.

In the multidimensional space initialization stage, the
multidimensional render space of the scene is coarsely sam-
pled and is split into several multidimensional subspaces. In
the coarse sampling step, our algorithm calculates the num-
ber of initial samples which decides how many samples will
be used in this stage. Random sample distribution is used to
coarsely sample the scene. During the initial splitting step,
a kd-tree is built on the entire multidimensional space. This
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Fig. 1 A two-level framework: Multidimensional Space Initialization Parallel Adaptive Rendering
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kd-tree is repeatedly sampled and split until the termination ~ 1aPle 1 The major notations used in this paper
criterion is fulfilled. After the node splitting is finished, each  Notation Description
kd-tree node contains a multidimensional subspace. A bal-
anced strategy is adopted to assign each subspace an appro- A multidimensional subspace
priate sample budget for the following refined adaptive sam- £ kd-tree node
pling. & error value of node £2;
In the parallel adaptive rendering stage, each subspace is vol; volume of node £2;
sampled and reconstructed in parallel. In the sampling step, radius of the Poisson disk
each subspace’s borders are extended to avoid the aliasing of f contribution function
the entire sample distribution. After extending the borders, D dimension of the render space
a sub kd-tree is built on each subspace. An anisotropic Pois- count of subspaces
son disk dlSFl‘lbuthH is used to generate the samples. Each heuristic parameter which controls the N
sub kd-tree is repeatedly sampled until the number of sam- P heuristic parameter which controls the

ples in this sub kd-tree arrives at its sample budget. In the re-
construction step, a noise removal strategy based on kd-tree
structure is applied and the series of subimages are recon-
structed from each sub kd-tree. The final image is combined
by these subimages. Our algorithm is illustrated in Fig. 1
and each step will be explained in the following sections.

4 Multidimensional space initialization

In most parallel non-adaptive sampling methods [19], tile
technique is used to generate samples in parallel, which sep-
arates the image plane into equal size pieces and renders
them with same samples in parallel. If this technique is used
in the parallel adaptive sampling method, it causes a terri-
ble block effect in the final image. In this paper, we pro-
pose to adaptively split the entire multidimensional space
into multidimensional subspaces of different size and assign
each subspace an appropriate sample budget.

At the beginning of the multidimensional space initial-
ization, the question of how many samples used in this stage

need to be determined first, which are called initial samples.
They are used to coarsely sample and separate the entire
space. The number of initial samples is calculated by
NT x D 11 U
_— *

i Q

c

NIZNA*U_Q:(CU* (1)

Table 1 shows the description of the major notations. The
number of initial samples N should be large enough to get
necessary information of this scene for the following split-
ting. It is the product of the count of subspaces N and the
user defined number Ug. N4 is the possible count of the
subspaces which is determined by the sampling dimensions
D and the total count of samples Nt. Ug is the user de-
fined maximum sample number of each kd-tree node which
should be big enough to get the node’s information, we typ-
ically use 512 in this stage. The notation M, represents the
maximum number of samples that can be saved in the ren-
dering computer, it depends on the computer memory. Co-
efficient w € [0, 1] controls the number of subspaces. Larger
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Fig. 2 (a) To adaptively sample the scene, a sub kd-tree is built on
the subspace. (b) First, our algorithm lays a sample (the red dot) in
the node which has the maximum error value. (¢) If the node’s sam-
ples beyond the maximum number, it is split along its longest dimen-

w causes more subspaces of small size and smaller w causes
less subspaces of large size.

After the initial samples are decided, random sample dis-
tribution is used to coarsely sample the entire multidimen-
sional space and a kd-tree is built based on this space us-
ing these coarse samples. The kd-tree used in our algorithm
has D dimensions as same as the entire render space di-
mensions which may contain image plane dimensions, time
dimension or lens aperture dimensions in implementation.
This kd-tree only saves samples in its leaf nodes. Each leaf
node calculates its error value and anisotropic information.
Only the node having the maximum error value can be sam-
pled. After sampling a node, we recalculate its error value.
When a leaf node contains more samples than Ug, it will
be split into two child nodes along its longest dimension.
An anisotropic Poisson disk sampling method (described in
Sect. 5) is used to repeatedly sample the leaf node until all
the initial samples have been used. Because each node will
not contain more than Ug samples, the number of initial
samples N determines the number of subspaces. After the
adaptive splitting, each leaf node contains a multidimen-
sional subspace and our algorithm assigns each subspace
an appropriate sample budget (described in Sect. 5). In im-
plementation, the initialization stage costs little time of the
entire render time, because the initial sample number Ny is
1-5 percent of the total sample number.

5 Parallel adaptive sampling
The parallel adaptive sampling stage is as similar as the
initial splitting stage. At the beginning, our algorithm ex-

tends each subspace’s borders and builds sub kd-trees using
samples which are already located in their domain during
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sion (the green line). During the repeatedly splitting, we calculate the
anisotropic vectors. (d) After splitting, this subspace is combined by
different size leaf nodes. The leaf nodes are assembled around the high
error value area. The meaning of arrows will be explained in Sect. 5.3

the initialization. Then, an anisotropic Poisson disk distri-
bution is used to repeatedly sample the leaf node having the
maximum error value in each subspace. Once a node has
been sampled, its error value is recalculated. If the sam-
ples in a leaf node are more than the maximum number
Uy, which is 4-8 here, this node is median-split along its
longest dimension. Once a sub kd-tree generates a new leaf
node, the error value and anisotropic vector of this node are
calculated. This sampling step will not stop until the sub-
space’s budget samples are all used. This process is shown
in Fig. 2.

5.1 Poisson disk distribution

Poisson disk distribution is effective for sampling im-
ages. Our algorithm chooses to use the traditional dart-
throwing method [14] to improve the image quality. The
dart-throwing algorithm generates uniform random samples
in the domain. If the distances of a sample from other sam-
ples are all greater than r, this sample is accepted. Other-
wise, it is rejected. So each sample has a minimum distance
r away from others, just like having a disk around it.

However, the adaptive principle makes it hard to de-
cide a fixed minimum distance r in multidimensional space.
We tend to use a Poisson disk technique with an vari-
able minimum distance r(vol). In the smooth regions of
the scene, r(vol) should be large. In the rapid changing re-
gions, 7 (vol) should be small. A novel method is proposed
to calculate this adaptive disk radius in multidimensional
space:

vol « I'(2 + 1
Fmax(vol) =2 % P #,

2

D
2 xUg
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1 x=1

I'(x)= ﬁ x=0.5 3)
x—DxI'x—1) x>1,

r(vol) = p * rmax (vol) “4)

First, a maximum disk radius rpax(vol) of a multidi-
mensional space is defined. This space is assumed to be
fulfilled with several equal size multidimensional spheres.
These spheres do not cross each other and they are as many
as the samples which will be sampled in this space. rmax
is the possible longest radius of these spheres. It is deter-
mined by the space’s volume vol, samples in this space and
the space dimension D. I"(x) function is easy to be calcu-
lated because D is an integer. Second, our algorithm multi-
plies rmax by a coefficient p € [0.5, 0.75] to find the suitable
minimum distance r(vol). In implementation, the input vol
is the volume of a leaf node and the samples in this space
is the user defined maximum sample number Uy, of a leaf
node. r (vol) is the suitable Poisson disk radius for sampling
kd-tree leaf nodes.

5.2 Error measurement

The error measurement is crucial for the adaptive sampling
method. There are some classical error methods to measure
the image’s variance [1, 7], but they only focus on the local
features and ignore the global ones. Overbeck et al. [9] use
wavelet analysis to measure both the global and local vari-
ances, but they only consider the image plane. We present a
novel error measurement strategy which makes full advan-
tage of the kd-tree structure and focuses on both local and
global features in multidimensional space. This strategy also
takes into account the optional depth and velocity features of
the scene.

volj — 1£(s) — fl
€ — %*an (5)
TN ng fi

The error value €; represents the variance of the space in
leaf node §2;. It is calculated by combining the differences
between the contribution f* of each sample in §2; and the
ideal value f ;7 of £2;. It is also multiplied by the volume
vol; of the node §2; which results in putting more samples
in the large nodes. The ideal value f j 1s a quantity evaluated
by iteration. At each iteration, it is calculated by f ' and fi.
f ;7 is the mean contribution of node §2; and f; is the ideal
value of node §2;’s parent §2;. The coefficient s controls
the measurement of error value. If o7 is smaller, f; is closer
to its parents’ mean contributions and the error value is more
sensitive to the global feature. Otherwise, it is more sensitive
to the local feature.

In implementation, most scenes details always have sim-
ilar size features and we define « ¢ according to a Gauss dis-
tribution exp(—|vol — featuresize|*>/8%). At the beginning,

the node’s volume vol is large and its error value is more
sensitive to its global feature. During the splitting, the node’s
volume becomes smaller and its error value becomes more
sensitive to its local feature. At last, some node’s volume
becomes too small and their error values become more sen-
sitive to its global feature again.

The F, is an optional factor. If there are more information
about the samples such as speed or depth, our error measure-
ment method use this optional factor to control the sampling
distribution to pay more attention on the depth-of-field or
the motion blur effects of the scene. In the depth-of-field ef-
fect case, the defocused area is much more blurring than the
focused area. The pixels of the defocused area share more
samples than the focused area. Our algorithm uses the fol-
lowing equation as Fy to put more samples near the focus
space:

1
cl e (7
o

Fdep=

|f —oldis — a@is| * lensradius

Fyep depends on the camera’s coefficient, the focus dis-
tance focaldis and the radius of lens aperture lensradius.
The input value dis is the node’s current distance from the
camera. To improve motion blur effect, our algorithm uses
Eqg. (8) to put more samples on the moving object.

Frnot=x %t + Yt + |Faep(dis) — Faep(dis +zx1)|  (8)

Fmot depends on the depth-of-field factor and the speed
of the current node. x, y, z are the node’s speed on different
axes which are calculated by summing its samples’ speed
value. ¢ is the time dimension length of this node.

5.3 Anisotropic technique

Most previous work have focused on isotropic sampling and
there are few research in anisotropic sampling, specially
in multidimensional anisotropic sampling. Anisotropic sam-
pling means putting samples according to the changing con-
tribution of their domain. In this paper, the anisotropic in-
formation is obtained by the order of node splitting. It is
used to help locating samples. Each leaf node contains an
anisotropic vector which represents the changing of the con-
tribution around it. When a leaf node needs to be split,
it means that the light contribution in this node changes
rapidly. The anisotropic vectors of the new leaf nodes are
generated by adding their parent’s anisotropic vector with
an additional vector. If the error value of the child node is
larger than its parent’s, the additional vector points from the
parent to its child. Otherwise, it points from the child to its
parent. The length of this additional vector is determined by
the difference of the error value between the parent node and
its child. This flow is displayed in Fig. 2.

In the sampling step, the anisotropic information is used
to assist the sampling (in Fig. 3). An earlier research [21]
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Fig. 3 (a) The maximum error value node is chosen (the red region).
(b) Our algorithm generates the multidimensional ellipsoid using the
anisotropic vector and locates a randomized sample in it (the red dot).

illumines us a way to generate anisotropic samples. Before
sampling the leaf node, our algorithm uses this node’s mul-
tidimensional anisotropic vector to construct a multidimen-
sional ellipsoid around it. After locating a uniform random
sample in this ellipsoid, the ellipsoid is warped to an sphere
around this leaf node. This sample’s new location is checked
by the Poisson disk condition.

5.4 Parallelization

To sample and reconstruct in parallel, each subspace needs
a reasonable sample budget before parallel adaptive ren-
dering stage. After initial splitting step, all leaf nodes have
similar error values. Each subspace is assumed to be split
Ba/Ug times in the following stage. The sample budget
number B4 of each subspace is evaluated by

€

Bx

*(NT+NaxUg) —Ug 9

total

Nr is the total count of samples. ¢; is the error value of
the subspace which is the leaf node of the kd-tree after initial
splitting step. Eioral = »_ €; is the sum of all the error values.
N 4 is the count of subspaces and the user defined U, means
the maximum number of the subspace.

Another problem caused by parallelization is the distribu-
tion of samples. When each subspace is rendered in parallel,
it is hard to maintain Poisson disk distribution near the bor-
der area of each subspace. To advance the distribution near
the border area, our algorithm slightly extends each sub-
space’s borders. The extent distance d is given by Eq. (4),
in which uses the sample budget B, instead of Ug. The
extent area is sampled by fake samples and will not be re-
constructed (in Fig. 4). The fake sample only has the loca-
tion information and does not need to get the light contribu-
tion.

In implementation, we use fixed threads to implement
our algorithm. Each thread renders a subspace. If the
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(¢) The ellipsoid is wrapped to a sphere around the node. (d) The sam-
ple is accepted, if its new location satisfies the Poisson disk condition.
The minimum radius r (vol) of this node is decided by Eq. (4)

Subspace A ~—+—Subspace Subspacé

(a) (b) (c)

Fig. 4 (a) Each subspace’s borders are extended by a distance d.
(b) The extent area (the blue area) is part of the subspace and is split as
same as the inner space. (¢) The extent area will not be reconstructed

threads rendered in parallel are fixed, the subspace’s size
can be changed to control the memory cost which is in-
fluenced by parameter w. Larger size subspaces cause
higher memory cost. Because the memory cost is under
control, our algorithm can render higher resolution im-
age which previous multidimensional adaptive method can-
not.

6 Reconstruction

Before the reconstruction, each leaf node is split until each
node contains only one sample. This splitting only separate
the space of each node without any calculation. It copies
each node’s error value and anisotropic information to its
child nodes.

6.1 Noise removal

Based on the kd-tree structure, we can easily apply a noise
removal step in our algorithm. This removal method is im-
plied by DeCoro’s approach [23]. The difference between
the contributions of samples is used to find out the noise.
First, each sample needs to be organized with its k-nearest
neighbors as a group and this sample is considered as a
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Fig. 5 (a) The leader sample (in red) and its k-nearest neighbors (in
blue) are organized to a group. (b) Our algorithm calculates the vari-
ance of this group and the difference between the leader and its neigh-
bors. (¢) If this difference is much larger than the variance, this leader
is considered as a noise sample and is removed

leader. Second, we calculate the color variance of each group
and the difference between the leader and its neighbors.
The variance of each group is the mean value of all mem-
bers’ differences. The difference is the contribution between
a sample and the mean contribution of its group. If this
leader sample’s difference is much larger or smaller than its
group’s variance, this leader is considered as a noise and
is removed (Fig. 5). After removing the noise sample, the
empty leaf node which contained this sample is combined
with its brother.

6.2 Image synthesis

The final step uses the contribution of each sample to eval-
uate the real image function. Our algorithm reconstructs the
image by integrating the contribution of every node in each
subspace. The core idea is shown in Eq. (10):

L('x7y): Z f(zf(xv)’vul,---,un)dul"'“n

2€P(x,y)

~ ), Vele= ) ) Vele  (10)

2€P(x,y) A€P(x,y) 2€A

L(x, y) is the pixel value in image coordination (x, y)
combined by the contribution of every part of node §2
in multidimensional space P(x,y). f is the light contri-
bution in multidimensional coordination (x, y, u1, ..., Uy).
Lo and Vg are the contribution and volume of node §2 in
subspace A.

The entire space is combined by all the sub kd-trees’
leaf nodes. Depending on the samples in each subspace,
their contributions are integrated into subimages. Each sam-
ple’s node has a volume and it is a hyper-rectangle which
may across several dimensions. The sample’s contribution
is timed by its node’s volume. The result is considered as
the integrated contribution of this node and the subimage
is combined by all its subspace’s node contribution. In ad-
ditional, if there are more information of samples such as
speed or depth, the time and lens aperture dimensions can
be integrated by an advanced method which introduced by
Lehtinen et al. [13]. In time dimension, each sample adds its

MDAS Method Our Method Reference

average 8 samples per pixel

(a) (b) (c)

average 8 samples per pixel 512 samples per pixel

Fig. 6 The 300 x 300 resolution dragon image with four dimensions
is rendered by our algorithm and MDAS method. (a) MDAS method
costs 221 seconds and 965 MB memory. (b) Our approach costs 37 sec-
onds and 312 MB memory. (¢) Compared to the reference image,
MDAS method is blurrier on the small sharp features

contribution to every pixels it passes along the time dimen-
sion length of its node. In lens aperture dimensions, each
sample is dispersed by the lens. The contribution of this
sample is added to its dispersed pixels. After reconstruct-
ing all the subimages, we combine them into the final im-
age.

7 Results

Our algorithm and previous approaches are implemented
on top of LuxRender [24]. The results were generated on
a Intel Xeon CPU X5450 system at 3.0 GHz, with 2 GB
of RAM, using eight threads. In this section, our tech-
nique is compared with previous adaptive methods in ren-
dering effects such as motion blur, depth-of-field and soft
shadows. The memory usage and time consumption are
also compared between our algorithm and MDAS, which
is the state-of-the-art method in multidimensional sampling
domain. In addition, we give the effect of the noise re-
moval technique and explain the parameters used in our ap-
proach.

7.1 Algorithmic improvement

Because MDAS method [4] costs a lot of memory, it can-
not generate a whole high resolution image. MDAS method
and our algorithm are compared by rendering a 300 x 300
resolution scene with depth-of-field effect. Our algorithm
is faster than the MDAS method and costs less memory
(Fig. 6). According to the sample distribution, our algorithm
puts more samples near the focus distance region and is
more sensitive to the edge.

Figure 7a compares the sample distribution between our
algorithm and MDAS. Our algorithm puts more samples on
the edges of the image. In Fig. 7b, we illustrate the prob-
lem of groove effects caused by sampling in parallel. It is
improved by extending each subspace’s borders. Figure 7c

@ Springer
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Using Noise Removal

Without Noise Removal

Fig. 7 (a) Our sample distribution puts more samples on the edges
than the MDAS method. (b) After using the extending border tech-
nique, the grooves in the sample distribution are extinguished. (c¢) The
right image has no high light pixel after using the noise removal

shows the effect of noise removal in our algorithm. Com-
pared with the original image, our algorithm removes the
high light samples clearly.

7.2 Examples

The results synthesized by our algorithm and previous meth-
ods such as low discrepancy approach, Mitchell adaptive
sampling [1] and MDAS technique [4] are shown in Fig. 8.
Mitchell and MDAS techniques are not rendered in parallel,
because the traditional adaptive sampling process is a seri-
alized process.

Scenes The experiments of three scenes use a wide range
of effects. The first scene (Fig. 8a) of motion blur effect con-
tains three moving balls. All its images were rendered at the
resolution 400 x 400 and eight samples per pixel. The sec-
ond scene (Fig. 8b) contains a billiard pool of depth-of-field
and soft shadows effects. The camera focuses on the purple
ball in the center. All its images were rendered at the res-
olution 1024 x 1024 and four samples per pixel. The third
scene (Fig. 8c) is an outdoor scene of motion blur and depth-
of-field effects. The car in the center is fixed and the back-
ground moves. All the images of this scene are rendered at
the resolution 1024 x 1024 and 16 samples per pixel. Be-
cause MDAS method costs too much memory, the first scene
is rendered at low resolution and the other two scenes are
rendered by MDAS’s tile technique [4] which renders only
part of the whole image. The cost time, visual image qual-
ity and the mean square error (MSE) are compared in each
image.

@ Springer

Comparisons The first scene (Fig. 8a) shows that our al-
gorithm is able to find and sample the motive regions. In
strong motive regions, our method is better than low discrep-
ancy method and Mitchell’s adaptive method which generate
more noises. In this motion blur scene, the result of MDAS
method is as good as ours, but our algorithm costs less time
and memory because of our two-level framework.

In the second scene (Fig. 8b), our algorithm generates
good effects of depth-of-field and soft shadows. In contrast
with low discrepancy method, Mitchell adaptive sampling
gains little benefit in these effects. MDAS technique re-
constructs a better soft shadows effect, but it causes alias-
ing in the high light dispersion circles. Because MDAS
does not remove the outlier samples and they disturb its
anisotropic reconstruction. The reference image is rendered
by random sampler with 1024 samples per pixel. Compared
with the reference image, our algorithm is able to sample
and reconstruct the image with smoother results and less
noises.

In the car scene (Fig. 8c), the experiments compare our
approach with others in a strong motion blur region and a
depth-of-field region. Because of the parallel and sampling
strategies in this article, our method synthesizes less noise
and smoother image than other methods with the equal sam-
ples per pixel. Different from MDAS’s tile technique which
separates the image plane into pieces and renders them one
by one, our algorithm renders the entire image in paral-
lel which is easy to implement and has no block effect re-
sults.

7.3 Discussion

The parameters w (in Eq. (1)) and p (in Eq. (4)) are ana-
lyzed by rendering the dragon scene with different values
of them (Fig. 9). The parameter w influences the number of
subspaces. If our algorithm uses certain samples and threads
to render a image, such as four samples per pixel and eight
threads, there is an inverse relationship between subspaces
and memory cost. The parameter p helps us to find the suit-
able Poisson disk of each node’s space. If p is too large,
it causes lots of refused samples during dart-throwing sam-
pling. If p is too small, the distribution does not have blue
noise property which affects the mean square error.

Limitations To sample each subspaces in parallel, we
present a strategy to assign each subspace a sample bud-
get. But this strategy may cause block effect in sampling
distribution (Fig. 7a). Like most adaptive algorithm, our al-
gorithm coarsely samples the scene at first. It may miss thin

or small features in the scene.
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Low Discrepancy

Our Method

8 samples per pixel
22 secs 400x400
MSE: 0.304

motion blur

4 samples per pixel
48 secs 1024x1024

MSE: 0.371
(b)

depth of field + soft shadow

Mitchell

average 8 samples per pixel average 8 samples per pixel average 8 samples per pixel
438 secs 400x400
MSE: 0.0271

average 4 samples per pixel  average 4 samples per pixel  average 4 sample per pixel
306 secs 1024x1024
MSE: 0.212

Reference
Monte Carlo

Qur Method

5120 samples per pixel
109 secs 400x400 400x400

MSE: 0.0127

27 secs 400x400
MSE: 0.0102

1024 samples per pixel

832 secs 1024x1024 1024x1024

MSE: 0.0567

210 secs 1024x1024
MSE: 0.0172

16 samples per pixel
107 secs 1024x1024
(c) MSE: 0.591

depth of field + motion blur

Fig. 8 (a) The first scene is a simple motion blur scene. The results
show our algorithm is able to find and sample the motion regions better
and faster than the other approaches. (b) The billiard pool scene shows
depth-of-field and soft shadows effects. With equal samples per pixel,
our algorithm generates an image with significantly less noises than

8 Conclusion and future work

This paper presents a kd-tree based parallel adaptive render-
ing algorithm. A two-level framework is proposed to control
the memory cost and reduce the time computation by paral-
lel rendering. Based on the kd-tree structure, an anisotropic
Poisson disk sampling method and a novel error measure-
ment strategy are proposed to improve the sampling. Our

931 secs 1024x1024
MSE: 0.0921

average 16 samples per pixel average 16 samples per pixel average 16 samples per pixel 1024 samples per pixel

429 secs 1024x1024
MSE: 0.0242

1570 secs 1024x1024
MSE: 0.0635

1024x1024

the other methods. (¢) The last scene is a complex scene of motion
blur and depth-of-field effects. Our technique is able to sample and
reconstruct the regions that are out of focus and strongly motive while
other samplers are more noisy in these regions

algorithm renders high quality images of motion blur, depth-
of-field and soft shadows effects.

According to the current render engine, our parallel al-
gorithm is based on the multithreaded CPU technique. Once
a GPU-based render engine has been developed, we plan
to accelerate our algorithm using GPU to achieve read-time
rendering. We also plan to develop a more efficient adaptive
algorithm to accelerate the generation of bokeh effects [25],

@ Springer
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Fig.9 (a) The memory cost 1400 —— Memory Cost 180 12000 ——Refused Samples 276

decreases gnd the number of 1200 Subspaces 160 Mean Square Error 27.4

subspaces increases, when the | 140 10000 -+ 27.2

parameter w increases. (b) The 1000 ® 27
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with the anisotropic characteristic of sample distribution rel- 14. Cook, R.L.: Stochastic sampling in computer graphics. ACM

evant with the bokeh pattern.
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