
An Accurate and Practical Camera Lens Model for Rendering Realistic Lens Effects

Jiaze Wu∗†, Changwen Zheng∗, Xiaohui Hu∗ and Chao Li∗†
∗National Key Laboratory of Integrated Information System Technology

Institute of Software of Chinese Academy of Sciences
†Graduate University of Chinese Academy of Sciences

Abstract

In this paper, an accurate and practical camera lens
model is proposed to be applied in realistic rendering
of lens-related effects. The optical modeling of this new
model is firstly presented from two aspects: lens surface
modeling and formulation of ray tracing equations. Then,
a number of tunable models for controlling lens properties
are introduced and combined together to determine overall
imaging performance. An implementation framework for this
lens model is presented from two important aspects: its
internal working framework and a new rendering pipeline
for integrating it into a general ray tracer. In contrast to
existing lens models, this new one is characterized by its
ability to accurately model the image formation process and
its friendly tunable models to control its lens properties. As
a consequence, it is capable of simulating complex lens-
related effects without too much expertise on lens optics.
Finally, multiple rendering experiments are performed to
demonstrate the ability and usage of this novel model to
simulate a variety of complex lens-related effects.

1. Introduction

Many fields, such as realistic rendering, virtual and aug-
mented reality and virtual studios, require accurate simu-
lation of real physical lenses. However, widely used lens
models in computer graphics, including pin-hole, thin lens
and thick lens, can not accurately capture optical imaging
characteristics of physical lenses, and therefore a large num-
ber of lens-related optical effects are absent in computer-
synthesized images using these models. More accurate ge-
ometric lens models, firstly proposed by Kolb et al. [1]
and then extended by Wu et al. [2], are able to model the
complex imaging characteristics of physical lenses, but is
limited to the spherical and dioptric lenses. However, non-
spherical and non-dioptric (catadioptric) lenses are common
in reality. In addition, geometric lens models are rarely ap-
plied in realistic rendering since they refer to many complex
optical principles and are hard to operate for common users.

Motivated by these observations, a realistic and practical
camera lens model is proposed in this paper to simultane-
ously improve the accuracy and practicability. In our new
model, multiple lens surface types, such as plane, sphere,

ellipsoid, paraboloid and hyperboloid, are supported, and
ray tracing equations are deduced for accurately simulating
optical behavior of physical lenses. In order to improve
usage of our lens model, we introduce a set of models to
tune its lens properties based on optical principles of lens
design and photography, including focal length, field of view
(FOV), diaphragm, normal focusing and selective focusing.
For each lens property, one or multiple corresponding con-
trollable parameters are provided. With these parameters,
the proposed model is able to be conveniently and friendly
operated to render arbitrary and interesting content of a 3D
scene with realistic lens-related optical effects.

2. Related work

Existing camera lens models in computer graphics can be
roughly divided into two categories: abstract lens models
and real lens models.

The abstract models are just used to describe ideal and
perfect image formation process. Pin-hole, thin and thick
lens models fall into this category. These models are so far
the most commonly used camera lens models in computer
graphics, and especially suitable for real-time rendering be-
cause of their simplicity. However, due to their low accuracy,
this kind of models rarely simulate any optical effects except
the depth of field effect [3].

The real models take optical data of physical lenses
as input, and precisely depict real and non-ideal image
production process by the ray tracing technique. Kolb et
al. [1] firstly proposed a geometric lens model for accurately
modeling complex real lenses using sequential ray tracing,
which is implemented into a path tracer for realistic image
synthesis and able to simulate various optical aberrations.
In order to improve the rendering performance, Heidrich
et al. [4] introduced a novel image-based model, which is
built on the geometric description of real lenses. Barsky et
al. [5] extended Kolb’s lens model to produce the visual
effect of the human eye. Wu et al. [2] enhanced Kolb’s
model to render complex bokeh effect incurred by optical
aberrations. Lee et al. [6] rendered the chromatic aberrations
of a single lens by calculating different refractive indices for
RGB channels, but not for the visual spectrum. In spite of the
ability of simulating complex optical effects, these models
are hard to operate in realistic rendering. In addition, the

2011 12th International Conference on Computer-Aided Design and Computer Graphics

978-0-7695-4497-7/11 $26.00 © 2011 IEEE

DOI 10.1109/CAD/Graphics.2011.18

63

Figure 1. Conic surface types with the same curvature
but different conic constants.

wavelength dependency of physical lenses is not considered
by these models.

3. Optical modeling

3.1. Lens surface

In theory, lens surface can be made with arbitrary shape,
but lens surface is made by common quadric surfaces for
reducing manufacturing cost. For a convex conic surface
with the apex at the origin of the coordinate system and
the orientation in z-axis, it is represented as

z = F (x, y) =
c(x2 + y2)

1 +
√
1− (1 + k)c2(x2 + y2)

, (1)

where c refers to the base curvature of the conic surface at its
apex, k to a conic constant with the expression k = −e2 and
defines its type, and e to its eccentricity. In order to deduce
a serial of equations for exact ray tracing, Equation 1 is
rewritten in a more useful form:

F (x, y, z) = x2 + y2 + z2 − 2rz − e2z2 = 0. (2)

For concave surfaces, r in Equation 2 has to be considered
as the negative value of the apical curvature. In general, a
plane is characterized by k = 0 and c = 0, a sphere by k = 0
and c ̸= 0, a paraboloid by k = −1, an oblate ellipsoid by
k > 0, a prolate ellipsoid by −1 < k < 0, and a hyperboloid
by k < −1 (a graphical description in Figure 1).

3.2. Ray tracing

For different purposes, we present two different ray
tracing algorithms from lens design field: exact (real) ray
tracing and paraxial ray tracing. The exact ray tracing obeys
Snell law when dealing with the specular refraction or
reflection at the lens surface boundary, is used to transform
a 3D scene to a 2D image, and usually cooperates with
traditional ray tracing algorithms (for instance path tracing

and bidirectional ray tracing) in the 3D scene to finish this
transformation work. The paraxial ray tracing, the simplified
version of the preceding algorithm, complies with simplified
Snell law (the sine of angle in the law is replaced by
itself assuming it is small), and is used to calculate basic
optical properties of complex lens systems [7]. These optical
properties are able to guide users to more precisely control
our lens model to render a 3D scene.

3.2.1. Exact ray tracing. The exact ray tracing is performed
surface by surface, and several important mathematical and
optical calculations must be performed for each lens surface.

Intersection calculation. An incident light ray R⃗0 with
starting point P⃗0 and unit direction D⃗0 can be denoted as
P⃗ = P⃗0+ tD⃗0. The intersection point P⃗1 of the ray R⃗0 with
a lens surface F satisfies the following equation:

x2
1 + y21 + z21 − 2rz1 − e2z21 = 0,

and it can be reformulated as a more useful vector form:

P⃗ 2
1 − 2rk⃗ · P⃗1 − e2(k⃗ · P⃗1)

2 = 0,

where k⃗ is the unit vector of the z axis, and substituting
P⃗1 = P⃗0 + tD⃗0 into and then reformulating this equation
yields

At2 + 2Bt+ C = 0,

A = 1− e2α2
0,

B = D⃗0 · P⃗0 − rα0 − e2x0α0,

C = P⃗0
2
− 2rx0 − e2x0,

(3)

and finally solving for t yields the desired intersection point.
Normal calculation. With the intersection point deter-

mined, we proceed to calculate the normal of the corre-
sponding surface at this point, which is a prerequisite to
obtain the direction vector of the refracted light ray in the
next step. The unit vector of the normal N⃗ at arbitrary point
on the lens surface can be denoted as

λ =
−F ′

x√
F ′2

x+F ′2
y+F ′2

z

,

µ =
−F ′

y√
F ′2

x+F ′2
y+F ′2

z

,

ν =
−F ′

z√
F ′2

x+F ′2
y+F ′2

z

,

(4)

where F ′
x, F ′

y and F ′
z are the partial derivatives of the lens

surface with respect to x, y and z respectively. Substituting
the coordinate of the intersection point P⃗1 into Equation 4,
the unit normal N⃗ at this intersection point can be denoted
as

λ = − x1c√
1+c2e2(x2

1+y2
1)
,

µ = − y1c√
1+c2e2(x2

1+y2
1)
,

ν = 1−z1(1−e2)c√
1+c2e2(x2

1+y2
1)
.

(5)

Refraction calculation. After obtaining the unit normal
N⃗ at the intersection point P⃗1 on current lens surface, the

64

refracted ray R⃗1 of the incident ray R⃗0 is easily determined
according to the following equation:{

R⃗1 = n
n′ R⃗0 + ΓN⃗ ,

Γ =

√
1− n2

n′2 (1− (R⃗0 · N⃗)
2
)− n

n′ R⃗0 · N⃗ ,
(6)

where n and n′ are the refractive indices of the incident and
refractive media. Here, the detailed deduction process can
be seen from the paper [2].

3.2.2. Paraxial ray tracing. If the inclination of a light ray
to the optical axis is small enough, the sines and tangents
of the various inclination angles in the equations of exact
ray tracing may be replaced by the angles themselves (in
radians). These equations are then reduced to their first-
order approximation (or Gaussian approximation), namely
paraxial ray tracing equations. Such paraxial equations are
widely used in the lens design field, and provide a very
well-established method to analyze the optical properties of
complex lens systems, such as object principle plane, image
principle plane, object focal plane, image focal plane, object
plane, image plane, entrance pupil and exit pupil. For this
kind of ray tracing, intersection calculation is fairly simple
and only refers to the intersection of an incident ray and
a planar surface because the lens surface is assumed to be
planar in paraxial region. The normal calculation is obsolete
because it is no more the prerequisite of the refraction
calculation, which can be determined by a set of more
concise equations. In order to obtain the refracted ray in
a more simple way, we need to employ a set of important
equations [8]:

i = l−r
r u,

i′ = n
n′ i,

u′ = u+ i− i′,

l′ = r + r i′

u′ ,

(7)

where u and u′ indicate the angles of the incident and
refracted rays with respect to the optical axis, i and i′ the
incident and refracted angles, l and l′ the object and image
interceptions, and r is the radius of the lens surface. Figure 2
illustrates these equations in a graphical way. Substituting
the angles, u and u′, by their paraxial relations in terms of
the distance from the lens surface to the object and image
points, l and l′, yields an useful relation:{

u = h
l ,

u′ = h
l′ ,

(8)

where h is the intersection height of the incident ray with
the lens surface. Substituting the first and fourth equations in
Equations 7 into their second equation, and simultaneously

Figure 2. A graphical illustration of paraxial ray tracing
for single lens surface.

utilizing Equations 8 yields an important equation:
n′u′ = nu+ n′=n

r h,

u = α
γ or

β
γ ,

u′ = α′

γ′ or
β′

γ′ ,

(9)

which is used to calculate the refracted ray.

4. Tunable lens property models

In order to bring our lens model into practical use in
realistic rendering, we present multiple controllable models
to tune lens properties frequently used in lens optics and
photograph, each of whom provides one or multiple tunable
parameters. These property models are combined together to
drive our lens model to feature the desired optical imaging
performance.

Focal length. The focal length is usually fixed when the
lens prescription is specified. However, Smith [9] pointed
that a lens prescription can be changed to arbitrary desired
focal length by scaling all of its dimensions with an appro-
priate const factor. Based on the optical property, our lens
model provides a focal length varying model, fs = sff ,
where sf is a scale parameter to define the ratio of the
desired focal length (fs) and original focal length (f). When
the scale parameter is given, all the dimensions, including
radius, thickness and aperture, should be multiplied by the
same scale parameter to obtain the expected focal length.

Field of view. Like real photography, the FOV of a lens
model can be used to determine the angular extent of a given
virtual 3D scene when applied to realistic rendering. Existing
lens models usually provide an immediate parameter to
control their FOV, but this does not reflect the physical
process of FOV variation. In optics, variation of the FOV
is mainly dependent on two factors: film size and film
distance. By considering the film dimension while tracing
rays originated from the film plane, our lens model provides
a tunable FOV model to exactly control the FOV. Once
either of both parameters is changed, the FOV will vary in
a physically-based way due to use of the exact ray tracing
method inside our model.

Diaphragm. The diaphragm of a physical lens acts as
an aperture stop, which limits the amount of light entering
a lens system. For our lens model, the diaphragm model is

65

controlled by two different parameters: f-number (also called
relative aperture or f-stop), which decides the size of the
aperture stop, and blade number, which indicates the number
of the blades constituting the aperture stop. The f-number
(F/#) is the ratio of the focal length (f) with respect to the
aperture diameter (D), F/# = f/D, and therefore small
f-number means large aperture.

Normal focusing. The normal focusing process refers
to movement of the focal plane along the optical axis.
Movement of the image plane also causes movement of
the focal plane. Therefore, the focusing process can be
controlled by moving the focal plane or image plane along
the optical axis. Our lens model provides a normal focusing
model to control the focusing process, which refers two
interrelated parameters: focal distance (U) and film distance
(V) . Both parameters satisfy the following thin equation,
1
U + 1

V = 1
f .

Selective focusing. Selective focusing refers to the ro-
tation of the image plane with respect to the lens, unlike
the image plane parallel to the lens in the normal focusing.
Selective focusing is usually used to direct viewer’s attention
to a small part of the image while de-emphasizing other
parts. For our lens model, selective focusing model is
realized by tracing rays from a tilted image plane, and
contains two kinds of different rotations: rotating the image
plane around its horizontal axis (tilt angle) or vertical axis
(swing angle).

5. Implementation

5.1. Lens selection

For our lens model, users can freely select their expected
physical lens by specifying a lens file created with a lens pre-
scription, which is widely used in lens design and describes
the detailed optical data of a lens system (Figure 3). A large
number of lens prescriptions can be freely found in a variety
of lens-related textbooks and lens design software. When
users want to use a special lens for rendering a scene, they
only need to create a lens file according to the corresponding
lens prescription. The lens file is passed to and parsed by
our developed program and then is used to create our lens
model.

5.2. Working framework

Figure 4 illustrates the internal working framework of
our lens model, which shows how our model works in
practice.It is noticed that the practical running framework
can be divided into two stages in order: initialization and
ray tracing.

The initialization stage involves several steps in sequence
as follows: 1) Specifying lens parameters. Our lens model
provides a set of lens parameters to control its different

(a) 2D profile view

(b) Lens file

Figure 3. A wide-angle lens obtained from [9].

Figure 4. Working framework of our lens model.

lens properties, and these parameters work together as a
flexible and convenient interface to drive the model to meet
the desired imaging properties. 2) Reading a lens file.
The lens file is the groundwork for accurately modeling
various optical behaviors of complex physical lenses. The
detailed parameters of real lenses are often unobtainable
because of patent protection. However, fortunately, many
textbooks [9], [10], in lens design field provide plenty of
lenses with detailed optical data. The format of the lens file
is illustrated in Figure 3. The lens data is read and parsed
from the formatted lens file, and then stored to a special data

66

Figure 5. Traditional rendering pipeline for a general
physically-based renderer.

structure for the following model creation. 3) Creating the
lens model. Taking the above special data structure as input,
each lens surface is created from left to right, shown in the
2D profile view of Figure 3, and then the entire lens system
model is established for the ray tracing executed later. 4)
Calculating basic lens properties. After the lens model is
created, the paraxial ray tracing introduced in Section 3.2 is
used to calculate their basic lens properties, such as object
principle plane, image principle plane, object focal plane,
image focal plane, object plane, image plane, entrance pupil
and exit pupil.

The ray tracing stage refers to cooperation between the
ray tracing algorithm for this lens model and the ray tracing
algorithms in a 3D scene for a general renderer, which is
discussed in the following text.

5.3. Rendering pipeline

In order to make our lens model support realistic ren-
dering, a widely distributed rendering software in computer
graphics, LuxRender [11], is chosen as the rendering platfor-
m, where our model is integrated. LuxRender is a physically-
based and unbiased rendering engine in computer graphics
community, which is extended from PBRT [12], another
widely used rendering engine by researchers. Figure 5
illustrates the basic rendering pipeline of LuxRender, which
consists of four basic components, namely sampler, camera,
integrator and film. The render function plays a central role
to bring these four components together. From this figure,
traditional rendering pipeline is roughly divided into four
stages: 1) Sampler generates a sample using a variety of
sampling algorithms and passes it to the camera; 2) Camera
generates an initial ray using the sample from the sampler,
and sends it to the integrator; 3) Integrator receives the initial
ray from the camera, traces it in the 3D scene by generating
a corresponding light path, calculates the radiance carried
along this light path, and then forwards the radiance to
the film; 4) Film records the radiance calculated from the
integrator. This rendering pipeline is executed iteratively for
each pixel of an image until specified conditions are met,

Figure 6. New rendering pipeline for integrating our lens
model.

for instance the maximum value of sample number per pixel
is arrived.

Our lens model is implemented as a part of the camera,
and integrated into the traditional rendering pipeline, but
leads to low efficiency under spectral rendering environment.
Aiming at this problem, a new rendering pipeline is pre-
sented to support more efficient spectral rendering, which is
shown in Figure 6. The new pipeline is composed of five
stages: 1) Sampler generates a sample like the first stage in
the old rendering pipeline; 2) Camera generates an initial
ray between the entrance pupil and focal plane using the
sample from the sampler, and sends it to the integrator; 3)
Integrator receives the initial ray from the camera, traces it
in the 3D scene by generating a corresponding light path,
calculates the radiance carried along the light path, and
then forwards the radiance and initial ray to the camera; 4)
Camera inversely traces the initial ray in our lens model to
obtain the pixel position which the radiance contributes to,
and then passes the radiance and pixel position to the film;
5) Film records the radiance at the specified pixel position.

5.4. Graphical interface

As an example of applying our lens model into practice,
we have successfully integrated it into a 3D modeling
software, Blender [13]. We develop a graphical user inter-
face (Figure 7) using Python language, and this interface
is built on and integrated into the Blender exporter of
LuxRender [11]. With this updated exporter, we can im-
mediately invoke LuxRender to render realistic lens effects
after creating the 3D scene in Blender. With this GUI,
we can conveniently modify model parameters to obtain
desired optical imaging properties. The 3D scene can be
created at arbitrary measurement unit in Blender, but our
model is built in millimeters. Therefore, to compensate the
inconsistency, the GUI provides three scale parameters for
the transformation from the world space of the 3D scene to
the camera space of our model.

67

Figure 7. A graphical user interface for operating our
lens model.

6. Rendering results

We performed several sets of different rendering exper-
iments to demonstrate the practicability and accuracy of
our lens model, and the corresponding rendering results are
displayed and discussed in the following part of this section.
All the lenses used in rendering experiments are obtained
from the lens design textbooks [9].

FOV variation. Figure 8 illustrates gradually increasing
FOV by tuning the film size and focal length, and a wide-
angle lens (F/3.4) is used with the f-number equal to F/8.0.
From Figure 8 (a) to (b), the film size (diagonal) is fixed
to 30mm, but the focal length is changed from 100mm to
80mm, which means the focal length ratio changes from 0.8
to 0.5. From Figure 8 (c) to (d), the focal length is fixed to
60mm, but the film size decreases from 50mm to 80mm.

Normal focusing. Figure 9 shows a gradually focusing
process from near to far by tuning the focus distance, and
a double-Gauss lens (F/1.35) is used with the aperture fully
open and the focal length of about 100mm. When the focus
distance is set to 2000mm, the book in the foreground is
sharply focused. Then changed to 3000mm, and the chesses
are in clear focus. If the lens model is focused at 5000mm,
the book near the window is very clear. After the focus
distance is increased to 10000mm, everything in the room
are blurry, but the landscape out of the window is fairly
clear. Although not referred, the film distance is similarly
used to realize the same focus processing according to the
normal focusing model.

Selective focusing. Figure 10 illustrates a variety of
selective focusing effects using two different lenses, namely
double-Gauss (F/2.0) and retro-focus (F/3.0), and both lenses
are set with full aperture. For each lens, the film plane is
swung clockwise (a vertical and clockwise rotation around
itself) by 10°and 20°. Although the objects in the scene are
in the same depth, but only the middle one is sharply focused
and others are blurred in different degrees. It is noticed that
various defocused effects appearing on the left and right
parts of the images.

Aperture variation. Figure 11 shows a variety of lens

(a) focal length (100mm) (b) focal length (80mm)

(c) film size (50mm) (d) film size (80mm)

Figure 8. Change of the rendered coverage by modify-
ing the film size and focal length.

(a) 2000mm (b) 3000mm

(c) 5000mm (d) 10000mm

Figure 9. Varying focusing effects with the focal dis-
tance gradually increased.

68

(a) Double-Gauss, 10° (b) Double-Gauss, 20°

(c) Retro-focus, 10° (d) Retro-focus, 20°

Figure 10. Selective focusing effects of different lenses
by clockwise swinging the film plane (a vertical and
clockwise rotation around itself).

(a) F/3.4, circular (b) F/8.0, circular

(c) F/3.4, pentagonal (d) F/3.4, hexagonal

Figure 11. Various lens effects by changing aperture
size and shape.

effects by changing aperture size and shape, and a wide-
angle lens (F/3.4) is used with the focal length of about
100mm. For Figure 11(a), the aperture is fully open, and
it is noticed that the interesting light intensity distribution
within the COC appears, which is caused by the spherical
aberration. When the aperture is turned down to F/8.0, the
spherical aberration will be absent and consequently the
distribution within the COC is more uniform, shown in
Figure 11(b). For Figure 11 (c), the pentagonal aperture (5
blades), instead of circular aperture, is used and we can
observe the pentagonal COC unlike the circular COC in
Figure 11 (a). For Figure 11 (d), the number of the blades is
increased to 6, and consequently the hexagonal COC appears
in the image.

Vision simulation. Our lens mode can also be used to
simulate the visual perception of the human eye. Figure 12

(a) Thin lens (b) Gullstrand

(c) LeGrand (d) Kooijman

Figure 12. Visual perception of different eye models
under the unaccommodated (fully relaxed) state.

illustrates the visual results of three representative schematic
eye models, namely Gullstrand [14], Le Grand [15] and
Kooijman [16], the former two models only consist of spher-
ical surfaces and the last model contains aspherical surfaces.
In addition, the thin lens model is also used for reference.
It is noticed that the thin lens model incurs blurring only in
depth, which is characteristic of depth of field of the human
eye. However, it fails to create horizontally or vertically
gradual blurring, which is featured by optical aberrations
of the human eye. In contrast, these schematic eye models
are designed to attempt to accurately predict the aberrations
inherent in the human eye, and therefore able to produce
deep, horizontal and vertical blurring effects. However, it is
seen that the results produced by Gullstrand and LeGrand
models are much blurrier than Kooijman model because
spherical surfaces introduce overmuch aberrations in contrast
to aspherical surfaces.

7. Conclusion

We have implemented a valuable accurate camera lens
model to improve the accuracy of the mapping process from
the 3D scene to the 2D image surface, and its usage in
rendering realistic optical effect caused by complex lens
systems. With this new model, the imaging properties of
physical lenses can be accurately simulated by modeling
their different aspects, for instance lens surface modeling and

69

derivation of ray tracing equations. In order to make it easier
to be operated in realistic rendering, this lens model provides
multiple controllable models to tune the lens properties
based on principles of lens design and photography. Aiming
at the unsuitability to integrate this new model into existing
ray tracing rendering pipeline, we have presented a new
rendering pipeline to solve it.

Despite the ability to produce many complex lens-related
optical effects, the proposed lens model fails to simulate
some other optical phenomena, such as lens flare, which is
caused by multiple back-and-forth refections between the
lens surfaces. In optics, this kind of multiple reflections is
incurred by Fresnel reflection and scattering occurring in
physical lenses. Therefore, we will try to implement a more
accurate and realistic lens model to account for more lens-
related effects by modeling more complex optical behaviors
in physical lenses. We also intend to employ adaptive
sampling techniques [17]–[19] to accelerate synthesis of
lens-related effects. In addition, it is possible to achieve both
interactive and realistic rendering of complex lens effects
by simplifying the proposed model in combination with the
recent interactive ray tracing engine, OptiX [20].

Acknowledgements

We thank the LuxRender community and anonymous
providers for the original version of the hotel room scene.

References

[1] C. Kolb, D. Mitchell, and P. Hanrahan, “A realistic camera
model for computer graphics,” in Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH, Los
Angeles, 1995, pp. 317–324.

[2] J. Wu, C. Zheng, X. Hu, Y. Wang, and L. Zhang, “Realistic
rendering of bokeh effect based on optical aberrations,” The
Visual Computer, vol. 26, no. 6, pp. 555–563, 2010.

[3] M. Potmesil and I. Chakravarty, “A lens and aperture camera
model for synthetic image generation,” in Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
Dallas, 1981, pp. 297–305.

[4] W. Heidrich, P. Slusallek, and H. P. Seidel, “An image-
based model for realistic lens systems in interactive computer
graphics,” in Proceedings of Graphics Interface, Kelowna,
1997, pp. 68–75.

[5] B. A. Barsky, B. P. Chen, A. C. Berg, M. Moutet, D. D.
Garcia, and S. A. Klein, “Incorporating camera models, ocular
models, and actual patient eye data for photo-realistic and
vision-realistic rendering,” 2003.

[6] S. Lee, E. Eisemann, and H.-P. Seidel, “Real-time lens blur
effects and focus control,” ACM Transactions on Graphics
(Proceedings of the SIGGRAPH conference), vol. 29, no. 3,
pp. 1–7, 2010.

[7] R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System
Design, 2nd ed. New York: McGraw-Hill, 2008.

[8] M. Born and E. Wolf, Principles of optics, 7th ed. Cam-
bridge: Cambridge University Press, 1999.

[9] W. J. Smith, Modern lens design. New York: McGraw Hill,
1992.

[10] M. Laikin, Lens Design, 3rd ed. New York: Marcel Dekker,
2001.

[11] LuxRender. (2010, 10) Luxrender: Gpl physically based
renderer. [Online]. Available: www.luxrender.net

[12] M. Pharr and G. Humphreys, Physically based rendering:
from theory to implementation. San Francisco: Morgan
Kaufmann, 2004.

[13] Blender. (2008-06-04) Blender: A free open source 3d content
creation suite. Blender Foundation. [Online]. Available:
www.blender.org

[14] A. Gullstrand, Appendix in H. von Helmholtz, 3rd ed. Phys-
iologique Optic, 1909.

[15] Y. Le Grand and S. G. El Hage, “Physiological optics.”
Berlin: Springer-Verlag, 1980.

[16] A. C. Kooijman, “Light distribution on the retina of a wide-
angle theoretical eye,” Journal of the Optical Society of
America, vol. 73, no. 11, pp. 1544–1550, 1983.

[17] C. Soler, K. Subr, F. Durand, N. Holzschuch, and F. Sillion,
“Fourier depth of field,” ACM Transactions on Graphics,
vol. 28, no. 2, p. 18, 2009.

[18] T. Hachisuka, W. Jarosz, R. P. Weistroffer, and K. Dale,
“Multidimensional adaptive sampling and reconstruction for
ray tracing,” ACM Transactions on Graphics(Proceedings of
the ACM SIGGRAPH conference), vol. 27, no. 3, p. 33, 2008.

[19] R. S. Overbeck, C. Donner, and R. Ramamoorthi, “Adap-
tive wavelet rendering,” ACM Transactions on Graphic-
s(Proceedings of the ACM SIGGRAPH Asia conference),
vol. 28, no. 5, p. 140, 2009.

[20] NVIDIA. (2011) Nvidia® optix ™ ray tracing engine.
[Online]. Available: http://developer.nvidia.com/object/optix-
home.html

70

